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Abstract: We present a systematical study on the kaon electromagnetic form factors

FK±,K0,K̄0(Q2) within the kT factorization formalism, where the transverse momentum

effects, the contributions from the different helicity components and different twist struc-

tures of the kaon light-cone (LC) wave function are carefully analyzed for giving a well

understanding of the hard contributions at the energy region where pQCD is applicable.

The right power behavior of the hard contribution from the higher helicity components and

from the higher twist structures can be obtained by keeping the kT dependence in the hard

amplitude. Our results show that the kT dependence in LC wave function affects the hard

and soft contributions substantially and the power-suppressed terms (twist-3 and higher

helicity components) make an important contribution below Q2 ∼ several GeV 2 although

they drop fast as Q2 increasing. The parameters of the proposed model wave function can

be fixed by the first two moments of its distribution amplitude and other conditions. By

varying the first two moments aK
1 (1GeV ) and aK

2 (1GeV ) with the region of 0.05 ± 0.02

and 0.10± 0.05 respectively, we find that the uncertainty of the kaon electromagnetic form

factor is rather small.
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1. Introduction

The electromagnetic form factors provide useful information concerning the internal struc-

tures of the mesons, and they also provide useful platforms to check the rightness of the

perturbative QCD (pQCD) theory. Recently, the electromagnetic form factor Fπ(Q2) has

been restudied in refs. [1 – 3]. It was shown that when all the power suppressed contribu-

tions, which include higher order in αs, higher helicities and higher twists in the light-cone

(LC) wave function, and etc., have been taken into account, then the hard contributions

can fit the present experimental data well at the energy region where pQCD is applicable.

By comparison the behavior of the kaon electromagnetic form factor is less certain both

experimentally and theoretically. The kaon is composed by two quarks with different quark

masses, therefore it becomes a little more complicated to obtain its LC wave functions and

to compute its electromagnetic form factor. For example, the kaon electromagnetic form

factor has been studied in refs. [4, 5] in the light-cone quark model only within the soft

region. Here we shall present a systematical study on the charged/neutral kaon electromag-

netic form factors in the intermediate and large energy region within the kT factorization

formalism by properly taking the SUf (3) breaking effects into account.

The kaon electromagnetic form factor can be obtained through the definition

〈K(p′)|Jµ|K(p)〉 = (p+ p′)µFK(Q2), (1.1)

where K stands for K±, K0 and K̄0 respectively, the vector current Jµ =
∑

i eiq̄iγµqi, with

the quark flavor i and the relevant electric charge ei. The momentum transfer q2 = −Q2 =

(p − p′)2 is restricted in the space-like region. In the LC quantization and by using the
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Drell-Yan-West (q+ = 0) frame [6], the kaon electromagnetic form factor can generally be

expressed as

FK(Q2) = Ψ̂ ⊗ Ψ̂ =
∑

n,λi

∑

j

ej

∫

[dxi][dki⊥]nΨ∗
n(xi,ki⊥, λi)Ψn(xi,ki⊥ + δiq⊥, λi), (1.2)

where the summation extends over all quark/gluon Fock states which have a non-vanishing

overlap with the kaon, ej is the electric charge of the struck quark, Ψn are the corresponding

wave functions which describe both the low and the high momentum partons, [dxi][dki⊥]n
is the relativistic measure within the n-particle sector and δi = (1−xi) or (−xi) depending

on whether i refers to the struck quark or a spectator, respectively.

Similar to the pionic case, it can be found that the nominal power law contribution to

FK(Q2) as Q → ∞ is FK(Q2) ∼ 1/(Q2)n−1 in the light-cone gauge (A+ = 0) [7], under

the condition that n quark or gluon constituents are forced to change direction. Thus only

the qq̄ component of Ψ((1−x)Q)(x,k⊥, λ) contributes at the leading 1/Q2. For the large Q2

region, the hard contribution to the kaon electromagnetic form factor can be written as

FK(Q2) =
∑

j

ej

∫

[dx][dy][d2k⊥][d2l⊥]Ψ∗(1−x)Q(x,k⊥, λ)TH(x, y,q⊥,k⊥, l⊥, λ, λ
′)Ψ(1−y)Q

×(y, l⊥, λ
′) + · · · , (1.3)

where the ellipses represent the higher Fock states’ contributions, [dx] = dx1d2δ(1−x1−x2)

and [d2k⊥] = d2k⊥/16π
3. Ψ((1−x)Q)(x,k⊥, λ) is the valence Fock-state LC wave function

with helicity λ and with a cut-off on |k⊥| that is of order (1 − x)Q. Such a cut-off on

|k⊥| is necessary to ensure that the wave function is only responsible for the lower momen-

tum region. And the hard scattering amplitude TH contains all two-particle irreducible

amplitudes for γ∗ + qq̄ → qq̄.

The LC wave function provides useful links between the hadronic phenomena in QCD

at large distance (non-perturbative) and small distance (perturbative). A LC wave function

is a localized stationary solution of the LC schrödinger equation i∂|Ψ(τ)〉 = HLC |Ψ(τ)〉 [8,

9], which describes the evolution of a state |Ψ(τ)〉 on the LC time τ ≡ x+ = x0 +x3 in the

physical LC gauge A+ = 0. For the valence quark state of the kaon, its LC wave functions

can be defined in terms of the bilocal operator matrix element [10],

〈K(p)|q̄β(z)qα|0〉 =
i
√

6

2

{

/p γ5 ΨK(x,k⊥) − µKγ5

[

Ψp(x,k⊥)−iσµν

(

nµn̄ν Ψ′
σ(x,k⊥)

6
−pµ Ψσ(x,k⊥)

6

∂

∂k⊥ν

)]

}

αβ

, (1.4)

where µK is the phenomenological parameter: µK = M2
K/(ms + mu) for K± and µK =

M2
K/(ms + md) for K0 or K̄0 respectively, which is a scale characterized by the chiral

perturbation theory. ΨK(x,k⊥) is the leading twist (twist-2) wave function, Ψp(x,k⊥) and

Ψσ(x,k⊥) are sub-leading twist (twist-3) wave functions that correspond to the pseudo-

scalar structure and the pseudo-tensor structure respectively. The wave function Ψ(x,k⊥)
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(Ψ stands for ΨK , Ψp and Ψσ respectively) satisfies the normalization condition
∫ 1

0
dx

∫

d2k⊥

16π3
Ψ(x,k⊥) =

fK

2
√

6
, (1.5)

where the decay constant fK = 160MeV [11]. The distribution amplitude (DA) φ(x) and

the wave function Ψ(x,k⊥) are related by

φ(x) =
2
√

6

fK

∫

|k⊥|<µf

d2k⊥

16π3
Ψ(x,k⊥). (1.6)

Non-leading perturbative contributions to the kaon electromagnetic form factor include

the higher order in αs, higher helicities and higher twists in the LC wave function, and etc.

Similar to the pionic case [1, 2], it is substantial to take kT dependence in the wave function

into account and to keep the transverse momentum dependence fully in the hard scattering

amplitude in the kT factorization formalism within the LC framework. In present paper,

we shall calculate all the helicity components’ contributions to the kaon electromagnetic

form factor within the LC pQCD framework, which is consistent with the using of LC wave

function. Another important power correction is from the higher twist structures in the

kaon DA. The end-point singularity becomes more serious for the higher twist structures,

because the asymptotic behavior of the twist-3 DAs, especially φas
p (x) = 1, so the calcula-

tions for these higher twist contributions have more uncertainty than that for the leading

twist. It means that one should use the twist-3 wave function with a better behavior in the

end-point region than that of the asymptotic one so as to give a more reliable estimation of

the higher twist structures’ contribution. The Brodsky-Huang-Lepage (BHL) prescription

provides a useful way to construct a wave function with better end-point behavior [12], we

shall adopt it to construct the kaon LC wave functions for the present purpose, and then

we discuss its uncertainty for the kaon electromagnetic form factor. The SUf (3)-breaking

effects shall also be included for constructing the kaon LC wave function.

The reminder of the paper is organized as follows. Section 2 is devoted to present the

main properties of the kaon electromagnetic form factor and the formulae for the twist-2 and

twist-3 contributions to the kaon electromagnetic form factor within the kT factorization

approach. Numerical results for the kaon electromagnetic form factor are presented in

section 3. The last section is reserved for conclusion and summary.

2. Kaon electromagnetic form factor within the kT factorization formalism

Because, K+ = us̄ and K− = sū, one can find that FK+ = −FK− according to eq. (1.2).

Similarly, since K0 = ds̄ and K̄0 = sd̄, it can be found that FK0 = −FK̄0. So, we only

need to calculate the K+ and K0 form factors, where e1 = 2/3, e2 = 1/3, m1 = mu

and m2 = ms for FK+ and e1 = −1/3, e2 = 1/3, m1 = md and m2 = ms for FK0

respectively. Here mu = md 6= ms stand for the light constitute quark masses. Further

more, in doing the calculation of the hard scattering amplitude with the kT factorization

formulism, we shall treat the current quark masses of u, d and s to be zero due to their

smallness in comparison to the involved hard scale. Then the calculation procedure for the

hard scattering amplitude is the same as that of the pionic case [2, 1].
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Figure 1: Six leading order time-ordered Feynman diagrams for the hard scattering amplitude TH ,

where p1 = (x1,k⊥), p2 = (x2,−k⊥), p′1 = (y1, y1q⊥ + l⊥), p′2 = (y2, y2q⊥ − l⊥).

λ1λ2 ↑↑ ↑↓
Ψλ1λ2

(x,k⊥, λ) − (a1+a2)(kx−iky)

[2(a2
1
+k2

⊥
)(a2

2
+k2

⊥
)]1/2ϕ(x,k⊥)

(a1a2−k2
⊥

)

[2(a2
1
+k2

⊥
)(a2

2
+k2

⊥
)]1/2ϕ(x,k⊥)

λ1λ2 ↓↑ ↓↓
Ψλ1λ2

(x,k⊥, λ) − (a1a2−k2
⊥

)

[2(a2
1
+k2

⊥
)(a2

2
+k2

⊥
)]1/2ϕ(x,k⊥) − (a1+a2)(kx+iky)

[2(a2
1
+k2

⊥
)(a2

2
+k2

⊥
)]1/2ϕ(x,k⊥)

Table 1: Full form of the LC wave function Ψ(x,k⊥, λ) = ϕ(x,k⊥)χ. Ψ(x,k⊥, λ) stands for

ΨK(x,k⊥, λ), Ψp(x,k⊥, λ) and Ψσ(x,k⊥, λ), respectively.

2.1 Formulae for the twist-2 contribution to the kaon electromagnetic form

factor

In the intermediate and large energy region, one can apply the pQCD approach and use

the valence Fock state to estimate the kaon electromagnetic form factor since the appli-

cability of pQCD in the intermediate and large energy region has been proved [13]. The

lowest-order contribution for the hard scattering amplitude TH comes from the one-gluon

exchange Feynman diagrams as shown in figure 1. To simplicity our notations, we sepa-

rate the spin-space wave function χK(x,k⊥, λ) out from the whole LC wave function, i.e.,

Ψ(1−x)Q(x,k⊥, λ) → χK(x,k⊥, λ)ϕ(1−x)Q(x,k⊥), where Ψ((1−x)Q)(x,k⊥) is the light-cone

wave function of the valence Fock state with a cut-off |k⊥| of order (1 − x)Q and the spin

space wave function χK(x,k⊥, λ) that comes from the spin space Wigner rotation can be

found in ref. [14],1 which is given in table 1. One can combine the spin-space wave function

χK(x,k⊥, λ) into the original TH to form a new one, i.e.,

TH = (e1ξ1 + e2ξ2)T
(λ1+λ2=0)
H (↑↓→↑↓) + (e1ξ1 + e2ξ2)T

(λ1+λ2=0)
H (↓↑→↓↑) +

(e1ξ
′
1 + e2ξ

′
2)T

(λ1+λ2=1)
H (↑↑→↑↑) + (e1ξ

′∗
1 + e2ξ

′∗
2 )T

(λ1+λ2=−1)
H (↓↓→↓↓) , (2.1)

where λ1,2 are the helicities for the (initial or final) kaon’s two constitute quarks respec-

tively. It is found that there is no hard scattering amplitude with quark and antiquark

1Setting m1 = m2 = mq, we return to the results of the case of pion.
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helicities being changed due to the fact that the quark helicity is conserved at each quark-

gluon (photon)-quark vertex in the limit of vanishing quark mass. ei is the electric charge

of the struck quark, ξi and ξ′i are coefficients derived from χK(x,k⊥, λ),

ξ1 =
(a1a2 − k2

⊥)(a′1a
′
2 − l2⊥)

2[(a2
1 + k2

⊥)(a2
2 + k2

⊥)(a′21 + l2⊥)(a′22 + l2⊥)]1/2
,

ξ′1 =
(a1 + a2)(a

′
1 + a′2)(k⊥ · l⊥ + ik⊥ × l⊥)

2[(a2
1 + k2

⊥)(a2
2 + k2

⊥)(a′21 + l2⊥)(a′22 + l2⊥)]1/2
,

ξ2 =
(b1b2 − k2

⊥)(b′1b
′
2 − l2⊥)

2[(b21 + k2
⊥)(b22 + k2

⊥)(b′21 + l2⊥)(b′22 + l2⊥)]1/2
(2.2)

and

ξ′2 =
(b1 + b2)(b

′
1 + b′2)(k⊥ · l⊥ + ik⊥ × l⊥)

2[(b21 + k2
⊥)(b22 + k2

⊥)(b′21 + l2⊥)(b′22 + l2⊥)]1/2
, (2.3)

where

a1 = xMa +m1, a2 = (1 − x)Ma +m2

a′1 = yM ′
a +m1, a

′
2 = (1 − y)M ′

a +m2

b1 = xMb +m2, b2 = (1 − x)Mb +m1

b′1 = yM ′
b +m2, b

′
2 = (1 − y)M ′

b +m1

M2
a =

m2
1 + k2

⊥

x
+
m2

2 + k2
⊥

1 − x
,M ′2

a =
m2

1 + l2⊥
y

+
m2

2 + l2⊥
1 − y

M2
b =

m2
2 + k2

⊥

x
+
m2

1 + k2
⊥

1 − x
,M ′2

b =
m2

2 + l2⊥
y

+
m2

1 + l2⊥
1 − y

Consequently, the above coefficients can be further simplified as

ξ1 =
[m1(1 − x) +m2x][m1(1 − y) +m2y]

2
√

k2
⊥ + [m1(1 − x) +m2x]

2
√

l2⊥ + [m1(1 − y) +m2y]
2
,

ξ′1 =
(k⊥ · l⊥ + ik⊥ × l⊥)

2
√

k2
⊥ + [m1(1 − x) +m2x]

2
√

l2⊥ + [m1(1 − y) +m2y]
2
,

ξ2 =
[m2(1 − x) +m1x][m2(1 − y) +m1y]

2
√

k2
⊥ + [m2(1 − x) +m1x]

2
√

l2⊥ + [m2(1 − y) +m1y]
2

(2.4)

and

ξ′2 =
(k⊥ · l⊥ + ik⊥ × l⊥)

2
√

k2
⊥ + [m2(1 − x) +m1x]

2
√

l2⊥ + [m2(1 − y) +m1y]
2
. (2.5)

Schematically, the total hard scattering amplitude can be written as

TH = (e1ξ1 + e2ξ2)T
(λ1+λ2=0)
H + [e1(ξ1 + ξ′∗1 ) + e2(ξ2 + ξ′∗2 )]T

(λ1+λ2=±1)
H

– 5 –
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with

T
(λ1+λ2=0)
H =

16πCFαs(µ
2
f )

(1 − x)(1 − y)xy
× (((x− 1)q⊥

2 − 2k⊥ · q⊥)(2l⊥ · q⊥ + (y − 1)q⊥
2))−1

((x− 1)(2l⊥ · q⊥ + (y − 1)q⊥
2) − 2(y − 1)k⊥ · q⊥)−1 ×

[

2(y − 1)y(1 − y + x(2y − 1))(k⊥ · q⊥)2 + (x− 1)x(2l⊥ · q⊥ + (y − 1)q⊥
2) ·

((1 − y + x(2y − 1))(l⊥ · q⊥) + 2(x− 1)(y − 1)yq⊥
2) −

(x− 1)(y − 1)y(k⊥ · q⊥) · (8x(l⊥ · q⊥) + (1 − y + x(6y − 5))q⊥
2)

]

, (2.6)

and

T
(λ1+λ2=±1)
H =

8πCFαs(µ
2
f )

(1 − x)(1 − y)xy
× (((x − 1)q⊥

2 − 2k⊥ · q⊥)(2l⊥ · q⊥ + (y − 1)q⊥
2))−1

((x− 1)(2l⊥ · q⊥+(y−1)q⊥
2)−2(y−1)k⊥ · q⊥)−1

[

2(x−1)x(l⊥ · q⊥)2 +

(y − 1)(2y(k⊥ · q⊥)2 + (x− 1)(x(l⊥ · q⊥) − y(k⊥ · q⊥))q⊥
2)

]

, (2.7)

where the scale µ2
f = Q2. It can be found that the leading contribution from the higher

helicity components is of order 1/Q4, which is next-to-leading contribution compared to

that of the ordinary helicity components.

With the help of eq. (1.3), we can obtain the leading-twist hard part contribution to

the kaon form factor. And after integrating over the azimuth angles for k⊥ and l⊥, we

obtain the contribution from the usual helicity components (λ1 + λ2 = 0),

F
twist2,(λ1+λ2=0)
K (Q2) =

∫

dxdydη1dη2

(e1ξ1)CFαs(µ
2
f )|k⊥||l⊥|

32π3xy
ϕ(x,k⊥)ϕ∗(y, l⊥) ×

[

x(x+ y − 1 − 2xy)

(1 − x)
√

1 − η2
1

+
y(x+ y − 1 − 2xy)

(1 − y)
√

1 − η2
2

+
x+ y − x2 − y2

(1 − x)(1 − y)
√

1 − η2
1

√

1 − η2
2

]

+

{

e1 ↔ e2, m1 ↔ m2

}

(2.8)

and the contribution from the higher helicity components (λ1 + λ2 = ±1),

F
twist2,(λ1+λ2=±1)
K (Q2) = −

∫

dxdydη1dη2

(e1ξ3)CFαs(µ
2
f )|k⊥||l⊥|

64π3xy
ϕ(x,k⊥)ϕ∗(y, l⊥)

×



(x+ y − 2xy)

(

1 −
√

1 − η2
1

) (

1 −
√

1 − η2
2

)

(1 − x)(1 − y)η1η2

√

1 − η2
1

√

1 − η2
2





+

{

e1 ↔ e2, m1 ↔ m2

}

, (2.9)

– 6 –
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where without loss of generality, we have implicitly assumed that the radial kaon wave

function ϕ(x,k⊥) depending on k⊥ through k2
⊥ only, i.e. ϕ(x,k⊥) = ϕ(x, k2

⊥). The terms

in the big brace are obtained by transforming the terms out of the brace through the

transformation e1 ↔ e2 and m1 ↔ m2. ξ3 = |k⊥||l⊥|
q

k2
⊥

+[m1(1−x)+m2x]2
q

l2
⊥

+[m1(1−y)+m2y]2
,

|k⊥| = Q(1 − x)η1/2 and |l⊥| = Q(1 − y)η2/2, with η1,2 in the range of (0, 1). An

overall minus sign in eq. (2.9) implies that the higher helicity components shall always

suppress the contribution from the usual helicity components.

2.2 Formulae for the twist-3 contributions to the kaon electromagnetic form

factor

The end-point singularity becomes more serious for the higher twist structures, because the

asymptotic behavior of the twist-3 DAs, especially φas
p (x) = 1, so the calculations for these

higher twist contributions have more uncertainty than that for the leading twist. As has

been pointed out in ref. [15], after including the parton transverse momenta, large double

logarithmic corrections αs ln2 k⊥ and αs ln2 x appear in higher order radiative corrections

and can be summed up to all orders. The relevant Sudakov form factors from both k⊥
and the threshold resummation can cure the endpoint singularity and then the main con-

tribution comes from the perturbative regions. For the present purpose, it is convenient

to transform the kaon form factor into the compact parameter b space. In the large Q2

region, by considering only the lowest valence quark state of the kaon and by doing the

Fourier transformation of the wave function with the formula,

Ψ(xi,k⊥;µf ) =

∫

d2b

(2π)2
e−ib·k⊥Ψ̂(xi,b;µf ),

we can transform the kaon electromagnetic form factor into the compact parameter b space,

FK(Q2) =

∫

[dxidb][dyjdh]Ψ̂(xi,b;µf )T̂ (xi,b; yj ,h;µf )Ψ̂(yj,h;µf ) × St(xi)St(yj) ×

exp(−S(xi, yj, Q,b,h;µf )), (2.10)

where µ̂f = ln(µf/ΛQCD), [dxidb] = dx1dx2d
2bδ(1 − x1 − x2)/(16π

3) and the hard kernel

T̂ (xi,b; yj ,h;µf ) =

∫

d2k⊥

(2π)2
d2l⊥

(2π)2
e−ib·k⊥−ih·l⊥T (xi,k⊥i; yj , l⊥j ;µf ).

The factor exp(−S(xi, yj , Q,b,h;µf )) contains the Sudakov logarithmic corrections and the

renormalization group evolution effects of both the wave functions and the hard scattering

amplitude,

S(x1, y1, Q,b,h;µf ) =









2
∑

i=1

s(xi, b,Q) +

2
∑

j=1

s(yj, h,Q)



 − 1

β1
ln
µ̂f

b̂
− 1

β1
ln
µ̂f

ĥ



 ,

(2.11)

where b̂ ≡ ln(1/bΛQCD), ĥ ≡ ln(1/hΛQCD) and s(x, b,Q) is the Sudakov exponent factor,

whose explicit form up to next-to-leading log approximation can be found in ref. [16]. In
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eq. (2.10), St(xi) and St(yi) come from the threshold resummation effects and the exact

form of each involves one parameter integration [17]. In order to simplify the numerical

calculations, we take a simple parametrization proposed in ref. [17],

St(x) =
21+2cΓ(3/2 + c)√

πΓ(1 + c)
[x(1 − x)]c , (2.12)

where the parameter c is determined around 0.3.

With the help of the above equations, we obtain the formula for the twist-3 contribu-

tions to the kaon electromagnetic form factor,

F twist3
K (Q2) =

128πµ2
K

3

∫ 1

0
dxdy

∫ ∞

0
bdbhdhαs(µf )T̂ (x,b; y,h;µf )St(xi)St(yj) ×

[

yΨ̂p(x, b;µf )Ψ̂∗
p(y, h;µf ) + (1 + ȳ)Ψ̂p(x, b;µf )

Ψ̂′∗
σ (y, h;µf )

6
+

Ψ̂p(x, b;µf )
Ψ̂∗

σ(y, h;µf )

2

]

exp [−S(xi, yj , Q,b,h;µf )] , (2.13)

where x̄ = (1 − x), ȳ = (1 − y) and ψ̂′∗
σ (y, h;µf ) = ∂ψ̂∗

σ(y, h;µf )/∂y. The hard scattering

amplitude T̂ (x,b; y,h;µf ) is given by

T̂ (x,b; y,h;µf ) = K0

(√
x̄ȳQb

)

(

θ(b− h)K0

(√
ȳQb

)

I0
(√
ȳQh

)

+

θ(h− b)K0

(√
ȳQh

)

I0
(√
ȳQb

)

)

, (2.14)

where the higher power suppressed terms such as (k⊥
2/Q2) has been neglected in the

numerator, I0 and K0 are the modified Bessel functions of the first kind and the second

kind respectively. To ensure that the pQCD approach is really applicable, one has to specify

carefully the renormalization scale µf in the strong coupling constant. Here we take the

scheme that is proposed in refs. [18], i.e. its value is taken as the largest renormalization

scale associated with the exchanged virtual gluon in the longitudinal and transverse degrees,

µf = max(
√
x̄ȳQ, 1/b, 1/h). (2.15)

The full form of the kaon LC wave function have four helicity components (table 1):

namely,

Ψ = (Ψ↑↑,Ψ↑↓,Ψ↓↑,Ψ↓↓), (Ψ = Ψp, Ψσ) (2.16)

By including the higher helicity components, eq. (2.13) can be improved as

F twist3
K (Q2) =

128πµ2
K

3

∫ 1

0
dxdy

∫ ∞

0
bdbhdhαs(µf ) × T̂ (x,b; y,h;µf )St(xi)St(yj) ×



y
∑

λ1λ2

P(Ψ̂p, λ1, λ2) +
(1 + ȳ)

6

∑

λ1λ2

P(Ψ̂′
σ , λ1, λ2) +

1

2

∑

λ1λ2

P(Ψ̂σ , λ1, λ2)





× exp [−S(xi, yj, Q,b,h;µf )] , (2.17)
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where Ψ̂′
σ = ∂Ψ̂σ/∂x and

∑

λ1λ2

P(Ψ̂p, λ1, λ2) = (Ψ̂∗
p↑↓Ψ̂p↑↓ + Ψ̂∗

p↓↑Ψ̂p↓↑) − (Ψ̂∗
p↑↑Ψ̂p↑↑ + Ψ̂∗

p↓↓Ψ̂p↓↓),

∑

λ1λ2

P(Ψ̂′
σ, λ1, λ2) = (Ψ̂∗

p↑↓Ψ̂
′
σ↑↓ + Ψ̂∗

p↓↑Ψ̂
′
σ↓↑) − (Ψ̂∗

p↑↑Ψ̂
′
σ↑↑ + Ψ̂∗

p↓↓Ψ̂
′
σ↓↓),

∑

λ1λ2

P(Ψ̂σ, λ1, λ2) = (Ψ̂∗
p↑↓Ψ̂σ↑↓ + Ψ̂∗

p↓↑Ψ̂σ↓↑) − (Ψ̂∗
p↑↑Ψ̂σ↑↑ + Ψ̂∗

p↓↓Ψ̂σ↓↓).

For the hard scattering amplitude T̂ (x,b; y,h;µf ), we have implicitly adopted the approx-

imate relation, i.e. T̂ (x,b; y,h;µf )↑↑+↓↓ ≈ −T̂ (x,b; y,h;µf )↑↓+↓↑, since it can be found

that

T̂ (x,b; y,h;µf )↑↑+↓↓ = −T̂ (x,b; y,h;µf )↑↓+↓↑ + O(1/Q2). (2.18)

3. Numerical results for the kaon electromagnetic form factor

Based on the formulae presented in the last section, we discuss sequentially the leading

and the power suppressed contributions to the kaon electromagnetic form factor within the

space-like region in the following. The differences between the pion and kaon electromag-

netic form factors shall also be discussed in the due places. In the numerical calculations,

we use Λ
(nf =4)

MS
= 250MeV . As for the phenomenological parameter µK , which is a scale

characterized by the chiral perturbation theory, we take its value to be µK ≃ 1.70 GeV.

And for definiteness, we take the conventional values for the constitute quark masses:

mu,d = 0.30GeV and ms = 0.45GeV.

3.1 LC wave function of the kaon

In order to obtain the numerical results for the kaon electromagnetic form factor, we need

to know its LC wave functions. One useful way is to use the approximate bound state

solution of a hadron in terms of the quark model as the starting point for modeling the

hadronic valence wave function. In combination of the spin-space wave function χ that

comes from the Wigner rotation [19], the full form of the kaon LC wave function can be

written as, Ψ(x,k⊥, λ) = ϕ(x,k⊥)χ. The explicit form of the spin-space wave function χ

can be found in table 1. As for the radial part of the wave function, we adopt the model

constructed in refs. [20, 21], which is based on the BHL-prescription [12],

ϕK(x,k⊥) = [1 +BKC
3/2
1 (2x− 1) + CKC

3/2
2 (2x− 1)]

AK

x(1 − x)

× exp

[

−β2
K

(

k2
⊥ +m2

1

x
+
k2
⊥ +m2

2

1 − x

)]

, (3.1)

ϕσ(x,k⊥) = Aσ exp

[

−β2
K

(

k2
⊥ +m2

1

x
+
k2
⊥ +m2

2

1 − x

)]

, (3.2)

ϕp(x, ~k⊥) = [1 +BpC
1/2
1 (2x− 1) + CpC

1/2
2 (2x− 1)]

Ap

x(1 − x)

× exp

[

−β2
K

(

k2
⊥ +m2

1

x
+
k2
⊥ +m2

2

1 − x

)]

, (3.3)
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where m1 = mu and m2 = ms for FK+(Q2), m1 = md and m2 = ms for FK0(Q2).

C
3/2
n (2x − 1) and C

1/2
n (2x − 1) are Gegenbauer polynomials. A more complicated model

that is also based on BHL-prescription is suggested in ref. [5]. Numerically it can be

found that the two model wave functions behave very likely under the same constraints.

Additionally, it has argued in ref. [22] that an extra factor
√

∂kz/∂x should be included

into the LC wave function, otherwise, one can not obtain the right asymptotic behavior for

the pion electromagnetic form factor at Q2 → ∞. However, we have checked that without

this factor, one can still obtain the right power behavior for the pion electromagnetic form

factor as shown in ref. [2], and such a factor will not bring any new features for the LC

wave function if its parameters are determined properly. So we shall adopt the simpler

form as suggested in refs. [20, 21] to do our calculation.

The four parameters AK , BK , CK and βK of ϕK(x,k⊥) can be determined by the first

two Gegenbauer moments aK
1 and aK

2 of φK(x), the constraint 〈k2
⊥〉

1/2
K ≈ 0.350GeV [23]

and the normalization condition

∫ 1

0
dx

∫

k2
⊥

<µ2
0

d2k⊥

16π3

a1a2 − k2
⊥

[(a2
1 + k2

⊥)(a2
2 + k2

⊥)]1/2
ϕK(x,k⊥)

=

∫ 1

0
dx

∫

k2
⊥

<µ2
0

d2k⊥

16π3

m1(1 − x) +m2x
√

k2
⊥ + [m1(1 − x) +m2x]

2
ϕK(x,k⊥) =

fK

2
√

6
, (3.4)

where µ0 stands for some hadronic scale that is of order O(1GeV ). Here, the wave function

is normalized to fK/2
√

6 only for convenience, which is different from that of refs. [20, 21]

that is normalized to one,2 where the factor fK/2
√

6 has been absorbed into the hard part

of the B → K transition form factor. And the average value of the transverse momentum

square of kaon is defined as

〈k2
⊥〉K =

∫

dxd2k⊥|k2
⊥||ΨK(x,k⊥)|2

∫

dxd2k⊥|ΨK(x,k⊥)|2 =

∫

dxd2k⊥|k2
⊥||ϕK(x,k⊥)|2

∫

dxd2k⊥|ϕK(x,k⊥)|2 .

The first Gegenbauer moment aK
1 has been studied by the light-front quark model [24],

the LCSR approach [25 – 29] and the lattice calculation [30 – 32] and etc. The higher

Gegenbauer moments, such as aK
2 , are still determined with large uncertainty [25 – 27, 33 –

35]. In the following calculation, if not specially stated, we take aK
1 (1GeV) = 0.05 [26]

and aK
2 (1GeV ) = 0.115 [35] to be their default values, and shall discuss the uncertainties

caused by these two factors in due places. By taking these default values, we obtain

AK = 12.55GeV −1, BK = 0.0605, CK = 0.0348, βK = 0.8706GeV −1 . (3.5)

The parameter Aσ of ϕσ(x,k⊥) can be determined by its normalization condition

similar to eq. (3.4), i.e. Aσ = 65.04GeV −1 . And the coefficients Ap, Bp and Cp of ϕp(x,k⊥)

can be determined by the DA moments of ϕp(x,k⊥). To discuss the uncertainty caused

by Ψp, we take two groups of DA moments that have been obtained in refs. [25, 36] to

determine the coefficients Ap, Bp and Cp, where the moments in ref. [25] are derived by

2It is noted that the unit of AK in ref. [20] should be corrected from GeV −1 to GeV −2.
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using the QCD light-cone sum rules and the moments in ref. [36] are derived based on the

effective chiral action from the instanton:

Group 1 [25] : 〈x0〉Kp = 1, 〈x1〉Kp = 0.06124, 〈x2〉Kp = 0.36757, (3.6)

Group 2 [36] : 〈x0〉Kp = 1, 〈x1〉Kp = 0.00678, 〈x2〉Kp = 0.35162. (3.7)

Here the moments are defined as 〈xi〉Kp =
∫ 1
0 dx(2x − 1)iφp(1 − x, µ0) with i = (0, 1, 2).

It should be noted that the moments defined in ref. [25, 36] are for φp(1 − x, µ0) other

than φp(x, µ0), since in these references x stands for the momentum fraction of s-quark in

the kaon (K̄), while in the present paper x stands for the momentum fraction of the light

quark q in the kaon (K). Taking the above two groups of DA moments, the parameters of

ϕp(x, ~k⊥) can be determined as,

Group 1 : A1
p = 12.12GeV−1, B1

p = 0.3062, C1
p = 1.604, (3.8)

Group 2 : A2
p = 12.04GeV−1, B2

p = 0.4711, C2
p = 1.506. (3.9)

It is found that both distribution amplitudes are double humped curves and are highly

suppressed in the endpoint region. Such feature is necessary to suppress the endpoint

singularity coming from the hard-scattering kernel and then to derive a more reasonable

results for the twist-3 contributions to the kaon electromagnetic form factor.

3.2 Valence Fock state contribution in the low energy region

At the present, the experimental data on the kaon electromagnetic form factor are concen-

trated in the low energy region Q2 < 1GeV 2, c.f. ref. [11]. The soft part contribution can

be written as

F s
K(Q2) =

∑

λ,λ′

∑

j

ej

∫ 1

0
dx

∫

d2k⊥

16π3
Ψ∗

K(x,k⊥, λ)ΨK(x,k′
⊥, λ

′) + · · · , (3.10)

where λ, λ′ are the helicities of the wave function respectively, and the first term is the

lowest order contribution from the minimal Fock state (valence Fock state) and the ellipses

represent those from higher Fock states, which are down by powers of 1/Q2 and by powers

of αs in the large Q2 region. In general, the kaon electromagnetic form factor should sum

over all of higher Fock state contributions in the low energy region. If only taking the

leading-twist LC wave function of the valence Fock state, we can examine the contribution

from the valence Fock state in the low energy region, i.e.

F
s(V )
K (Q2) = e1

[∫ 1

0
dx

∫

d2k⊥

16π3
κϕK(x,k⊥)ϕ∗

K(x,k′
⊥)

]

+ e2

[

m1 ↔ m2

]

, (3.11)

where e1 = 2/3, e2 = 1/3, m1 = mu and m2 = ms for F
s(V )
K+ and e1 = −1/3, e2 = 1/3,

m1 = md and m2 = ms for F
s(V )
K0 respectively. The terms in the second bracket is obtained

by transforming the terms in the first bracket through m1 ↔ m2, the coefficient κ that is
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from the spin-space Winger rotation can be written as

κ =
(a1a2 − k2

⊥)(a′1a
′
2 − k′2

⊥) + (a1 + a2)(a
′
1 + a′2)k⊥ · k′

⊥

[(a2
1 + k2

⊥)(a2
2 + k2

⊥)(a′21 + k′2
⊥)(a′22 + k′2

⊥)]1/2

=
[m1(1 − x) +m2x]

2 + k⊥ · k′
⊥

√

k2
⊥ + [m1(1 − x) +m2x]

2
√

k′2⊥ + [m1(1 − x) +m2x]
2
, (3.12)

where k′
⊥ = k⊥ + (1 − x)q⊥ for the final state LC wave function when taking the Drell-

Yan-West assignment [6]. Since m1 6= m2, we have F
s(V )
K0 (Q2) 6= 0, which is different from

the pionic case, i.e. F
s(V )
π0 (Q2) ≡ 0 because π0 has equal quark masses.

We proceed to integrate the transverse momentum k⊥ in eq. (3.11) with the help of

the Schwinger α−representation method,

1

Aκ
=

1

Γ(κ)

∫ ∞

0
ακ−1e−αAdα . (3.13)

Doing the integration over k⊥, we obtain
∫ 1

0
dx

∫

d2k⊥

16π3
κϕK(x,k⊥)ϕ∗

K(x,k′
⊥)

=

∫ 1

0
dx

∫ ∞

0
dλ

A2
K(x)

128π2(1 + λ)3
×

[

I0

(

Q2(x− 1)β2
Kλ

2

4x(1 + λ)

)(

4(1 − x)x(1 + λ)

β2
K

−Q2(1 − x)2(2 + λ(4 + λ)) + 8m2
b(1 + λ)2

)

− I1

(

Q2(x− 1)β2
Kλ

2

4x(1 + λ)

)

Q2(1 − x)2λ2

]

× exp

[

−β
2
K [8m2

a(1 + λ) + 8m2
bλ(λ+ 1) +Q2(1 − x)2(2 + λ(4 + λ))]

4(1 − x)x(1 + λ)

]

, (3.14)

where the short notations AK(x) ≡ AK
x(1−x) [1 + BKC

3/2
1 (2x − 1) + CKC

3/2
2 (2x− 1)], m2

a =

m2
1(1 − x) + m2

2x, m
2
b = [m1(1 − x) +m2x]

2, and In (n = 0, 1) is the modified Bessel

function of the first kind. Substituting eq. (3.14) into eq. (3.11) and doing the expansion

in the small Q2 limit, we obtain

F
s(V )
K (Q2)|Q2=0

= e1

{∫ 1

0
dx

∫ ∞

0
dλ

A2
K(x)

16π2(1 + λ)2
exp

[

−2β2
K(m2

a +m2
bλ)

(1 − x)x

] [

m2
b(1 + λ) +

x(1 − x)

2β2
K

]}

+e2{m1 ↔ m2}, (3.15)

where the term [m2
b(1 + λ)] in the second square bracket comes from the ordinal helicity

components, while the remaining terms are from the higher helicity components. As for

the mean square radius 〈r2K〉V , we obtain

〈r2K〉V ≈ −6
∂F

s(V )
K (Q2)

∂Q2

∣

∣

∣

∣

∣

Q2=0

= e1

{
∫ 1

0
dx

∫ ∞

0
dλ

3A2
K(x)β2

K

32π2x(1 + λ)3
exp

[

−2β2
K(m2

a + λm2
b)

(1 − x)x

]

(1 − x)(2 + 4λ+ λ2)

×
[

(1 − x)x

β2
K

+m2
b(1 + λ)

]}

+ e2

{

m1 ↔ m2

}

. (3.16)
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Figure 2: The valence Fock state contribution to the kaon electromagnetic form factor |FK+(Q2)|2
in the low energy region, where the experimental data is taken from ref. [37]. The shaded band

is obtained with aK
1 (1GeV ) ∈ [0.03, 0.07] and aK

2 (1GeV ) ∈ [0.05, 0.10], and the solid line is for

aK
1 (1GeV ) = 0.05 and aK

2 (1GeV ) = 0.115.

The result for the soft contribution to the kaon electromagnetic form factor is shown

in figure 2, where the solid line is for aK
1 (1GeV ) = 0.05 and aK

2 (1GeV ) = 0.115 and the

shaded band is obtained with aK
1 (1GeV ) ∈ [0.03, 0.07] and aK

2 (1GeV ) ∈ [0.05, 0.10]. The

valence quark contribution is slightly below the experimental data, which means that there

are still some space for the higher Fock state contributions. With the help of eq. (3.14), we

can estimate the probability of finding the valance states in the charged/neutral kaon, e.g.

we obtain (Pus̄ = 0.901 < 1.0), which shows that higher Fock states and higher twist terms

should also be considered to give a full understanding of the form factor at the energy region

Q2 → 0. Such probability can be further divided into two parts: (P
(λ1+λ2=0)
us̄ = 0.562) for

the usual helicity components and (P
(λ1+λ2=±1)
us̄ = 0.339) for the higher helicity states.

It shows that the higher helicity components have the same importance as that of the

usual helicity components in the soft energy region. It is noted that the higher helicity

components’ contribution to the kaon electromagnetic form factor has also been studied

with the LC framework in ref. [5], where the probability of the leading Fock state is just

normalized to one and the experimental data on the mean-square radius of charged/neutral

kaon are used to determine the wave function parameters. As argued above, this simple

treatment maybe not right, since then the contribution from the valence state can be

enhanced and become important inadequately.3

As for the charged and neutral mean square radii 〈r2K+〉V and 〈r2K0〉V , we ob-

tain 〈r2K±〉1/2
V = 0.570 fm and 〈r2K0〉V = −0.0736 fm2, which is consistent with the

ref. [39], while experimentally we have 〈r2K±〉1/2 = 0.560 ± 0.031 fm and 〈r2K0〉 =

−0.077 ± 0.010 fm2 [11]. Further more, we give a simple estimation of the uncertain-

ties caused by the two Gegenbauer moments of the kaon twist-2 wave function, e.g. by

taking aK
1 (1GeV ) = 0.05± 0.02 and aK

2 (1GeV ) = 0.10± 0.05, we obtain the probability of

3As has been pointed out in ref. [2], the condition for the pionic case is more serious, where the proba-

bilities for the value quark state is only about 74%.
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Figure 3: Leading twist contribution to the kaon electromagnetic form factor in the intermediate

and large energy region, where the left is for Q2FK+(Q2) and the right is for Q2FK0(Q2). The

dotted line stands for the contribution from the usual helicity (λ1 + λ2 = 0) components, the

dashed line stands for the contribution from the higher helicity (λ1 +λ2 = ±1) components and the

solid line is the total hard contribution, which is the combined result for all the helicity components.

The dash-dot line stands for the usual asymptotic result of charged kaon.

finding the valence Fock state in the kaon Pus̄ = 0.901+0.026
−0.010, and the uncertainties of radii

〈r2K±〉1/2
V = 0.570+0.021

−0.028 fm and 〈r2K0〉V = −0.0736+0.018
−0.014 fm2. It should be noted that by

taking different values for aK
1 and aK

2 , all the undermined parameters of the wave function

should be varied accordingly.

3.3 leading twist contribution to the kaon electromagnetic form factor

With the help of the LC wave function eq. (3.1), we show the leading twist contribution

to the kaon electromagnetic form factor in the intermediate and large energy region in

figure 3, where the contribution from the usual helicity component or from the higher

helicity components are considered. It is shown that the higher helicity components always

suppress the usual helicity components’ contributions to the kaon electromagnetic form

factor. The usual asymptotic result of charged kaon, i.e. Q2FK+(Q2)|asy = 8πf2
Kαs(Q

2),

is also presented in figure 3 for reference. It can be found that the leading contribution of

the hard-scattering amplitude from the higher helicity components is of order 1/Q4, which

is next-to-leading contribution compared to the contribution coming from the ordinary

helicity component, but it shall give sizable contributions to the kaon electromagnetic form

factor in the intermediate energy region. The net contribution shows the right power

behavior Q2FK+(Q2)|Q2→∞ → const. In the present work, we have considered the kT

dependence both in the wave function and in the hard scattering amplitude consistently

within the LC pQCD approach, then our results present a right power behavior for the

higher helicity components’ contributions. Secondly, in contrary to the pionic case, we

obtain FK0(Q2) = −FK̄0(Q2) 6= 0 at Q2 6= 0, which are rightly caused by the SUf (3)-

breaking effect and are strongly dependent on the constitute quark masses.

We take the charged kaon electromagnetic form factor as a concrete example to show
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Figure 4: Uncertainties of the leading twist contribution to Q2FK+(Q2) caused by aK
1 and aK

2 ,

where the left diagram is for fixed aK
2 (1GeV ) = 0.05 with aK

1 (1GeV ) = 0.03, 0.05 and 0.07, and

the right diagram is for fixed aK
1 (1GeV ) = 0.05 with aK

2 (1GeV ) = 0.05, 0.10 and 0.15 respectively.

the uncertain caused by aK
1 (1GeV ) and aK

2 (1GeV ), which are varied within the region of

[0.03, 0.07] and [0.05, 0.15] respectively. We draw the charged kaon electromagnetic form

factor in figure 4, where the left diagram is for fixed aK
2 (1GeV ) = 0.05 with aK

1 (1GeV ) =

0.03, 0.05 and 0.07, and the right diagram is for fixed aK
1 (1GeV ) = 0.05 with aK

2 (1GeV ) =

0.05, 0.10 and 0.15 respectively. Q2FK+(Q2) decreases with the increment of aK
1 . From

Fig(4), it can be found that the uncertainty of the form factor caused by aK
1 (1GeV) =

0.05 ± 0.02 is small, e.g. it is about ±5% for q2 ∈ [2, 20]GeV 2. And the uncertainty of the

form factor caused by aK
2 (1GeV) varying within a bigger region [0.05, 0.15] is also small,

i.e. which is about 4%−9% for q2 ∈ [2, 20]GeV 2. Q2FK+(Q2) decreases with the increment

of aK
2 in the lower energy region q2 . 6GeV 2 and increases with the increment of aK

2 in

the higher energy region q2 & 6GeV 2.

3.4 Twist-3 contribution to the kaon electromagnetic form factor

We show the twist-3 contribution to kaon electromagnetic form factors Q2FK+(Q2) and

Q2FK0(Q2) in figure 5, which are obtained with the full form of the LC wave functions

Ψf
p(x,k⊥) and Ψf

σ(x,k⊥) and with the Group 1 parameters for Ψp(x,k⊥). It is found that

at the twist-3 level, the higher helicity components’ contributions to the form factor are

negative and small in comparison to that of the usual helicity components. The twist-2

contribution is also presented in figure 5 for comparison. At the twist-3 level, both the

charged and the neutral kaon electromagnetic form factors decrease with the increment

Q2, and the charged form factor becomes smaller than the twist-2 contribution at around

Q2 = 7GeV 2, which is changed to be Q2 ≃ 12GeV 2 for the neutral case. This implies

that the twist-3 contributions are sizable in the intermediate energy region and are rightly

power suppressed to the twist-2 contributions in the large energy region, which is similar

to the pionic case as shown in ref. [1].

The main uncertainty sources for the twist-3 contribution come from the wave function

Ψp(x,k⊥) and the parameter βK . We show the contributions to the charged kaon elec-

– 15 –



J
H
E
P
0
4
(
2
0
0
8
)
0
4
3

5 10 15 20

0.0

0.1

0.2

0.3
Q

2 F K+(Q
2 )(

G
eV

2 )

 

 

Q2(GeV2)
5 10 15 20

0.00

0.01

0.02

0.03

0.04

0.05

 

 

Q
2 F K0(Q

2 )(
G

eV
2 )

Q2(GeV2)

Figure 5: Twist-3 contribution to the kaon electromagnetic form factor Q2FK+(Q2) and

Q2FK0(Q2). The dotted line stands for the contribution from the usual helicity (λ1 + λ2 = 0)

components, the dashed line stands for the contribution from the higher helicity (λ1 + λ2 = ±1)
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Figure 6: Uncertainty caused by two types of twist-3 wave function Ψp to the electromagnetic

form factors Q2FK+(Q2) (Left diagram) and Q2FK0(Q2) (Right diagram). The solid line and the

dotted line are for Group 1 and Group 2 parameters respectively.

tromagnetic form factor from the two groups of parameters for Ψp(x,k⊥) in figure 6, c.f.

eqs. (3.8), (3.9). It is found that the uncertainty within the allowable energy region caused

by these two groups of parameters are about 10 − 20% and 20 − 30% for the charged case

and the neutral case respectively. Secondly, we show the uncertainty caused by the param-

eter βK in figure 7, where the Group 1 moments [25] are used to determine the parameters

of Ψ(x,k⊥) and three typical values βK = 0.85GeV −1, 0.87GeV −1 and 0.89GeV −1 are

adopted.4 The twist-3 contribution increases with the increment of βK , and the uncer-

tainty is less than 5% for the charged form factor, while for the neutral form factor the

4When varying aK
1 (1GeV ) and aK

2 (1GeV ) within the region of [0.03, 0.07] and [0.05, 0.15] respectively,

the value of βK shall vary within the region of [0.856, 0.896]GeV −1.
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respectively.

uncertainty changes to be ∼ 10%.

As for the higher order corrections, we present a naive estimation of the next-to-

leading order (NLO) twist-2 contribution to the charged kaon electromagnetic form fac-

tor with the help of the asymptotic DA, i.e. with the renormalization scale and the

factorization scale taken to be µ2
R = µ2

f = Q2, it can roughly be expressed as [38],

Q2FNLO
K+ ≈ (0.903GeV 2)

f2
K

f2
π
α2

s(Q
2). Numerically the NLO correction will give about

∼ 20 − 30% extra contribution to the charged kaon electromagnetic form factor.

4. Summary and conclusion

The kT factorization formalism provides a convenient framework and has been widely

applied to various processes. In this paper we present a systematical study on the kaon

electromagnetic form factors FK±,K0,K̄0(Q2) within the kT factorization formalism. In

order to get a deeper understanding of the hard contributions at the energy region where

pQCD is applicable, we have examined the transverse momentum effects, the contributions

from the different helicity components and different twist structures of the kaon LC wave

function. Our results show that the right power behavior of the hard contribution from

the higher helicity components and from the higher twist structures can be obtained by

keeping the kT dependence in the hard scattering amplitude. The full estimation of the

power suppressed contributions to the kaon electromagnetic form factors Q2FK+(Q2) and

Q2FK0(Q2) is shown in figure 8. The kT dependence in LC wave function affects the hard

and soft contributions substantially and the power-suppressed terms (twist-3 and higher

helicity components) make an important contribution below Q2 ∼ several GeV 2 although

they drop fast as Q2 increasing.

The parameters of the proposed model wave function can be fixed by the first two

moments of its distribution amplitude and the normalization condition. In this paper we
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have taken the first two moments aK
1 (1GeV ) = 0.05 ± 0.02 and aK

2 (1GeV ) = 0.10 ± 0.05.

It is found that the uncertainty of the kaon electromagnetic form factor, which is caused

by varying values within the above range, is rather small. It is also found that the power-

suppressed twist-3 contribution makes an important contribution at Q2 ∼ several GeV 2

and drops fast as Q2 increasing. A naive estimation gives the NLO correction about

∼ 20 − 30% extra contribution to the charged kaon form factor.

The relativistic effect due to the Wigner rotation have also been applied to calculation

the kaon electromagnetic form factor. Consequently there are higher-helicity (λ1 + λ2 =

±1) components in the spin space wave function besides the usual-helicity (λ1 + λ2 = 0)

components. It is shown that the higher helicity components have the same importance

as that of the usual helicity components for the soft energy region, e.g. the probability of

finding the valance states in the charged kaon includes two parts: (P
(λ1+λ2=0)
us̄ = 0.562)

for the usual helicity components and (P
(λ1+λ2=±1)
us̄ = 0.339) for the higher helicity states

for aK
1 (1GeV ) = 0.05 and aK

2 (1GeV ) = 0.115. By taking aK
1 (1GeV ) = 0.05 ± 0.02 and

aK
2 (1GeV ) = 0.10±0.05, we obtain the uncertainty of the probabilities Pus̄ = 0.901+0.026

−0.010, It

is found that the hard-scattering amplitude for the higher-helicity components is of order

1/Q4 which is the next to leading contribution compared with the contribution coming

from the ordinary helicity component, but it can give sizable contributions to the kaon

electromagnetic form factor, especially for the twist-2 case as shown in figure 3.
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